Selasa, 18 September 2012

GENERATOR AC


Genarator AC










Kelompok
·         Tomi Triandi                                 (40)
·         Muhammad Iqbal Maulana           (27)
·         Arya Bayu Nugraha                      (06)
·         Arta Wirawan                               (05)
·         Sayid Abdullah A.P                      (35)
·         Dwi Gita Angarini                                    (18)
·         Dian Pratiwi                                  (15)









Kata Pengantar
Om Swastiastu
            Puji syukur kepada TuhanYang Maha Esa karena rakmat-Nya kami dapat menyelesaikan MAKALAH ini dengan  tepat waktu tanpa halangan yang berarti. Dengan selesainya makalah ini, kami berharap makalah ini dapat memberikan manfaat, kamipun meminta maaf bila ada kata kata yang salah atau yang tidak berkenan dihati  mohon dimaafkan .

Om Santhi, Santhi,Santhi Om


Daftar isi
Halaman judul.....                                                        1
Kata Pengantar......                                                     2
Daftar isi......                                                               3























A.    Pengertian dan Prinsip Kerja Generator AC

a.       Pengertian Generator AC
Generator merupakan sebuah alat yang mampu menghasilkan arus listrik. salah satu jenis generator adalah generator arus bolak balik yang akan dibahas saat ini. Generator arus bolak-balik berfungsi mengubah tenaga mekanis menjadi tenaga listrik arus bolak-balik. 
Generator Arus Bolak-balik sering disebut juga sebagai alternator atau generator AC (alternating current) atau juga generator singkron. Alat ini sering dimanfaatkan di industri untuk mengerakkan beberapa mesin yang menggunakan arus listrik sebagai sumber penggerak.
Generator arus bolak-balik dibagi menjadi dua jenis, yaitu:
a. Generator arus bolak-balik 1 fasa
b. Generator arus bolak-balik 3 fasa


b.      Prinsip Kerja Generator
Prinsip dasar generator arus bolak-balik menggunakan hukum Faraday yang menyatakan jika sebatang penghantar berada pada medan magnet yang berubah-ubah, maka pada penghantar tersebut akan terbentuk gaya gerak listrik.
Besar tegangan generator bergantung pada :
1. Kecepatan putaran (N)
2. Jumlah kawat pada kumparan yang memotong fluk (Z)
3. Banyaknya fluk magnet yang dibangkitkan oleh medan magnet (f)
3. Konstruksi Generator

Generator arus bolak-balik ini terdiri dari dua bagian utama, yaitu
1. Stator, merupakan bagian diam dari generator yang mengeluarkan tegangan bolakbalik
2. rotor, merupakan bagian bergerak yang menghasilkan medan magnit yang menginduksikan ke stator.

Stator terdiri dari badan generator yang terbuat dari baja yang berfungsi melindungi bagian dalam generator, kotak terminal dan name plate pada generator. Inti Stator yang terbuat dari bahan ferromagnetik yang berlapis-lapis dan terdapat alur-alur tempat meletakkan lilitan stator. Lilitan stator yang merupakan tempat untuk menghasilkan tegangan. Sedangkan, rotor berbentuk kutub sepatu (salient) atau kutub dengan celah udara sama rata (rotor silinder).

c.       Jumlah Kutub pada Generator
Jumlah kutub generator arus bolak-balik tergantung dari kecepatan rotor dan frekuensi dari ggl yang dibangkitkan. Hubungan tersebut dapat ditentukan dengan persamaan berikut ini.
F = p.n/120
Keterangan:
f = frekuensi tegangan (Hz)
p = jumlah kutub pada rotor
n = kecepatan rotor (rpm)

d.      Induksi elektronik
Induksi elektromagnetik dapat dikatakan sebagai proses perubahan energi mekanik (energi kinetic) menjadi energi listrik. Proses perubahan energi ini, berkaitan dengan konsep fluks magnetic
Kita mulai dengan mempelajari Fluks magnetic dan Huhum Faraday secara kuantitatif.


1. Fluks magnetik
Fluks magnetic didefinisikan sebagai hasil kali antara komponen induksi magnetic dengan luas bidang
Hukum Faraday
Perhatikan gambar berikut !
Hukum Lenz :
“ Arah arus induksi  adalah sedemikian sehingga medan magnetic yang ditimbulkannya berlawanan dengan arah medan magnetic yang menimbulkan arus induksi itu”
4. GGL induksi pada penghantar yang digerakan dalam medan magnetik

d. Penerapan Konsep Induksi Elektromagnetik
1. Dynamo/Generator AC
2. Generator DC
3. Transformatorm : Transformator adalah alat yang digunakan untuk mengubah tegangan bolak-balik (AC) dari tegangan tinggi ke tegangan rendah ( Transformator Step –Down)
Transformator Step-Up, mengubah tegangan rendah ke tegangan tinggi. Prinsip Keja : Terjadi perubahan fluks magnetik pada kumparan primer, yang menghasilkan arus induksi pada kumparan sekunder.
Rumus Transformator :  V1/ V2 = N1 / N2,    h = Ps/Pp x 100 %, P = V. I.

Sistem pengisian AC paling banyak digunakan, baik sistem pengisian dengan regulator mekanik (konvensional) maupun dengan IC regulator.
Komponen sistem pengisian regulator mekanik terdiri dari :
1.        Alternator yang berfungsi merubah energi gerak menjadi energi listrik. Listrik yang dihasilkan merupakan arus bolak-balik (AC), untuk merubah arus AC menjadi arus DC digunakan diode yang dipasang menjadi satu bagian dengan alternator.
2.        Regulator berfungsi untuk mengatur tegangan dan arus yang dihasilkan alternator dengan cara mengatur kemagnetan pada rotor altenator. Regulator juga berfungsi untuk mengatur hidup dan matinya lampu indikator pengisian.
3.        Sekering untuk memutus aliran listrik bila rangkaian dialiri arus berlebihan akibat hubungan singkat.
4.        Kunci kontak untuk menghubungkan atau memutus aliran ke lampu indicator dank e regulator. Aliran listrik ke regulator diteruskan ke altenator berfungsi untuk menghasilkan magnet pada altenator.
5.        Baterai menyimpan arus listrik dan stabilizer tegangan yang dihasilkan sistem pengisian.    

ALTERNATOR
Alternator yang berfungsi merubah energi gerak menjadi energi listrik. Listrik yang dihasilkan merupakan arus bolak-balik (AC), untuk merubah arus AC menjadi arus DC digunakan diode yang dipasang menjadi satu bagian dengan Alternator.
            Prinsip Kerja Alternator
Bila pada generator DC sebuah penghantar dibentuk “U”, di ujung penghantar dipasang komutator, pada komutator menempel sikat. Sikat “A”  merupakan sikat positip dan sikat “B” adalah sikat negatip, maka pada generator AC (altenator) kedua ujung penghantar dihubungkan ke slip ring dan jenis sikat sudah tidak jelas karena berubah ubah sesuai posisi penghantar.  Saat penghantar diputar maka penghantar tersebut akan memotong medan magnet sehingga menghasilkan induksi elektromagnetik. Arah arus yang dihasilkan akan berubah-ubah, pada posisi (1) arah arus menuju sikat “A”, namun pada posisi (2) arah arus berubah menuju sikat “B”. Perubahan tersebut dapat digambarkan dalam fungsi gelombang sinus.
Kontruksi Alternator
Pada altenator terdapat 4 terminal yaitu terminal B,E,F dan N. Terminal B merupakan terminal output altenator yang dihubungkan ke baterai, beban dan regulator terminal B. Terminal E berhubungan dengan sikat negatip, bodi alternator dan terminal E regulator. Terminal F berhubungan dengan sikat positip dan dihubungkan ke terminal F regulator, Terminal N berhubungan dengan neutral stator coil, saat altenator menghasilkan listrik maka terminal N juga menghasilkan listrik, listrik yang dihasilkan terminal N dialirkan ke regulator terminal N, untuk mematikan lampu indicator pengisian.
Pada regulator terdapat 6 terminal mempunyai terminal B,E,F,N, IG dan L.  Empat dari 6 terminal tersebut berhubungan dengan terminal altenator yaitu B, E,F,  N. Dua  terminal regulator yang lain yaitu terminal IG dan L, berhubungan dengan terminal IG kontak dan lampu.

KOMPONEN UTAMA ALTERNATOR
Pulley
Berfungsi untuk tempat V belt penggerak alternator yang memindahkan gerak putar mesin untuk memutar alternator.

Kipas (fan)
Berfungsi untuk mendinginkan komponen altenator yaitu diode maupun kumparan pada alternator.
Rotor
Fungsi rotor untuk menghasilkan medan magnet, kuat medan magnet yang dihasilkan tergantung besar arus listrik yang mengalir ke rotor coil.  Listrik ke rotor coil disalurkan melalui sikat yang selalu menempel pada slip ring. Terdapat dua sikat yaitu sikat positip berhubungan dengan terminal F,  sikat negatip berhubungan dengan massa atau terminal E.  Semakin tinggi putaran mesin, putaran rotor altenator semakin tinggi pula, agar listrik yang dihasilkan tetap stabil maka kuat magnet yang dihasilkan semakin berkurang sebanding dengan putaran mesin.
Rotor alternator
Bila rotor dirangkai seperti gambar diatas, maka arus listrik akan mengalir dari positip baterai, variable resistor, amper meter, slip ring, rotor coil, slip ring dan ke negatip baterai. Adanya aliran listrik pada rotor menyebabkan rotor menjadi magnet,  saat tahanan pada variable resistor kecil maka arus yang mengalir sangat besar, magnet pada rotor sangat kuat, namun bila tahanan variable resistor besar maka arus yang mengalir ke rotor coil menjadi kecil sehingga kemagnetan juga menjadi kecil. Pada saat tahanan variable resistor kecil maka voltmeter  yang dipasang pada slip ring menunjukan tegangan yang besar, sebaliknya saat tahanan variable resistor besar maka tegangan pada slip ring menjadi kecil.

Stator
Stator berfungsi sebagai kumparan yang menghasilkan listrik saat terpotong medan magnet dari rotor.Stator terdiri dari stator core (inti stator)  dan stator coil. Disain stator coil ada 2 macam yaitu model “delta” dan model “Y”. Pada model  “Y”, ketiga ujung kumparan tersebut disambung menjadi satu. Titik sambungan ini disebut titik “N” (neutral point). Pada model delta ketiga ujung lilitan dijadikan satu sehingga membentuk segi tiga (delta). Model ini tidak memiliki terminal neutral (N). Stator coil menghasilkan arus listrik AC tiga phase. Tiap ujung stator dihubungkan ke diode positip dan diode negatip.

Dioda (rectifier)
Dioda  berfungsi untuk menyearahkan arus AC yang dihasilkan oleh stator coil  menjadi arus DC, disamping itu juga berfungsi untuk menahan agar arus dari baterai tidak mengalir ke stator coil.  Sifat diode adalah meneruskan arus listrik satu arah. Gambar 4.12 a. merupakan diode positip yang dirangkai seri dengan lampu pada sebuah baterai 12 V. rangkaian tersebut merupakan rangkaian bias maju (forward direction voltage) sehingga diode dapat mengalirkan arus listrik, lampu menyala. Bila hubungan kabel ditukar yang kabel yang berhubungan dengan positip dipindah ke negatip dan sebaliknya maka diode mendapat bias mundur (reverse direction voltage) sehingga diode tidak dapat mengalirkan arus listrik, maka lampu padam.
Kontruksi dioda pada elternator
Pada altenator jumlah diode terdiri dari 6 atau 9 buah diode yang digabungkan.  Menurut pemasangannya diode ini dapat dibagi menjadai 2 bagian yaitu diode positip dan diode negatip.  Membeda diode posistip dan negatip saat terpasang pada dudukannya dengan cara  dioda negatip plat pemegang bodi diode dibautkan langsung ke bodi alternator tanpa isolator, sedangkan pada diode positip plat pemegang bodi diode dipasang ke rumah alternator dengan menggunakan isolator.  Membedahkan diode lebih akurat menggunakan Ohm meter.  

Prinsip Kerja Penyearah arus listrik pada stator coil
Prinsip kerja penyearahan arus listrik yang dihasilkan stator coil pada altenator adalah sebagai berikut:
Saat rotor altenator berputar maka terjadi induksi elektromagnetik pada stator coil, gambar 4.13 a, menunjukkan bahwa ujung stator coil “A” negatip dan ujung stator coil “C” menghasilkan arus positip,  arus yang dihasilkan stator coil “C” disearahkan oleh diode positip “C” , kemudian dialirkan ke baterai (battery). Rotor terus berputar sehingga stator coil “C” yang tadinya menghasilkan arus positip menjadi menghasilkan arus negatip, arus positip dihasilkan oleh stator coil “B”,  arus yang dihasilkan stator coil “B” disearahkan oleh diode positip “B” , kemudian dialirkan ke baterai. Demikian seterusnya sehingga secara bergantian stator coil mengasilkan gelombang listrik dan disearakan oleh diode, selisih gelombang satu dengan yang lain 120º.

Sikat (brush)
Sikat berfungsi untuk mengalir arus listrik dari regulator ke rotor coil. Pada altenator terdapat dua sikat, yaitu :
1.        Sikat positip yang berhubungan dengan terminal F alternator
2.        Sikat negatip berhubungan dengan bodi altenator dan terminal E
Sikat selalu menempel dengan slip ring, saat rotor berputar maka akan terjadi gesekan antara slip ring dengan sikat, sehingga sikat menjadi cepat aus.  Kontak sikat dengan slip ring harus baik agar listrik dapat mengalir dengan baik,  agar kontak sikat dengan slip ring baik maka sikat ditekan oleh pegas.
Sikat merupakan bagian yang sering menjadi penyebab gangguan pada altenator, karena cepat aus. Sikat yang sudah pendek dapat menyebabkan aliran listrik ke rotor coil berkurang, akibat tekanan pegas yang melemah. Berkurangnya aliran listrik ke rotor coil menyebabkan  kemagnetan rotor berkurang dan listrik yang dihasilkan altenator  menurun.  Bila sikat suda pendek harus segera diganti, sebab kalau sampai sikat habis maka slip ring akan bergesekan dengan pegas sikat sehingga menjadi aus. Sikat yang sudah habis dapat menyebabkan liran listrik ke rotor coil terputus, kemgnetan rotor hilang, altenator tidak dapat menghasilkan listrik, tidak terjadi proses pengisian.

Sikat patah  dan pecahnya rumah sikat sering dijumpai akibat kesalahan saat merakit altenator. Saat  rotor dilepas sikat akan keluar akibat tekanan pegas, pada kondisi tersebut bila seseorang merakit rotor, maka bearing rotor akan menekan sikat sehingga sikat patah dan hal ini dapat pula menyebabkan rumah sikat pecah, untuk menghindari hal tersebut maka sikat harus dimasukkan ke rumahnya dan ditahan menggunakan kawat yang dimasukan melaui lubang kecil yang sedah tersedia, bila sikat sudah tertahan oleh kawat maka rotor dapat dimasukkan dengan aman.

Regulator
Regulator berfungsi untuk mengatur arus dan tegangan yang dihasilkan oleh altenator. Arus yang dihasilkan altenator sampai putaran 2000 rpm sebesar 10 A atau kurang, namun saat beban lampu dihidupkan maka arus yang dihasilkan pada putaran 2000 rpm sebesar 30 A atau lebih sesuai kapasitas dari altenator dan beban listriknya. Tegangan yang dihasilkan altenator dijaga tetap stabil pada 13,8-14,8 Volt. 
Regulator mekanik 6 terminal mempunyai terminal E, F, N, B, IG dan L. Pada regulator ini terdiri dari dua bagian yaitu voltage regulator yang berfungsi untuk mengatur arus dan tegangan pengisian dan voltage relay yang berfungsi untuk mengatur hidup dan matinya lampu indicator pengisian sebagai indikasi sistem pengisian berfungsi.

Pola susunan terminal pada regulator tipe A adalah IG,N,F dan E,L,B, sedangkan pola susunan terminal pada regulator tipe B adalah B,L,E dan F,N,IG. Meskipun terminal regulator mempunyai pola tertentu, namun kita sering mengalami kesulitan dalam menentukan terminal regulator, sehingga kita kesulitan menentukan apakah regulator tertentu tipa A atau tipe B. Cara menentukan terminal regulator mekanik 6 terminal adalah:
1.    Tentukan mana bagian voltage regulator, mana bagian voltage relay. Voltage regulator mudah dikenali karena mempunyai ciri mempunyai  resistor.
2.    Identifikasi terminal pada voltage regulator, dimana voltage regulator mempunyai 3 terminal yaitu IG, F dan E.


Terminal
Ciri-ciri
IG
Berhubungan dengan resistor, dapat platina tepi yang saat normal/ belum bekerja posisi menempel dengan platina tengah
F
Berhubungan dengan resistor, dapat platina tengah
E
Berhubungan dengan massa/ bodi regulator, berhubungan dengan ujung kabel lilitan voltage regulator maupun voltage relay

3.    Identifikasi terminal pada voltage relay, dimana voltage relay mempunyai 3 terminal yaitu B, L dan N.

Terminal
Ciri-ciri
B
Berhubungan platina tepi yang saat normal/ belum bekerja posisi tidak menempel dengan platina tengah
L
Berhubungan dengan platina tengah
N
Berhubungan dengan kabel lilitan voltage relay


Untuk generator sinkron tiga fasa, harus ada tiga belitan yang masing-masing terpisah sebesar 120 derajat listrik dalam ruang sekitar keliling celah udara seperti diperlihatkan pada kumparan a – a’, b – b’ dan c – c’ pada gambar 2. Masing-masing lilitan akan menghasilkan gelombang Fluksi sinus satu dengan lainnya berbeda 120 derajat listrik. Dalam keadaan seimbang besarnya fluksi sesaat :

ΦA = Φm. Sin ωt
ΦB = Φm. Sin ( ωt – 120° )
ΦC = Φm. Sin ( ωt – 240° )

Besarnya fluks resultan adalah jumlah vektor ketiga fluks tersebut adalah:
ΦT = ΦA +ΦB + ΦC, yang merupakan fungsi tempat (Φ) dan waktu (t), maka besar- besarnya fluks total adalah:
ΦT = Φm.Sin ωt + Φm.Sin(ωt – 120°) + Φm. Sin(ωt– 240°). Cos (φ – 240°)

Dengan memakai transformasi trigonometri dari :

Sin α . Cos β = ½.Sin (α + β) + ½ Sin (α + β ),

maka dari persamaan diatas diperoleh :

ΦT = ½.Φm. Sin (ωt +φ )+ ½.Φm. Sin (ωt – φ) + ½.Φm. Sin ( ωt + φ – 240° )+ ½.Φm. Sin (ωt – φ) +½.Φm. Sin (ωt + φ – 480°)

Dari persamaan diatas, bila diuraikan maka suku kesatu, ketiga, dan kelima
akan silang menghilangkan. Dengan demikian dari persamaan akan didapat
fluksi total sebesar, ΦT = ¾ Φm. Sin ( ωt - Φ ) Weber .

Jadi medan resultan merupakan medan putar dengan modulus 3/2 Φ dengan
sudut putar sebesar ω. Maka besarnya tegangan masing-masing fasa adalah :

E maks = Bm. ℓ. ω r Volt

dimana :

Bm = Kerapatan Fluks maksimum kumparan medan rotor (Tesla)
ℓ = Panjang masing-masing lilitan dalam medan magnetik (Weber)
ω = Kecepatan sudut dari rotor (rad/s)
r = Radius dari jangkar (meter)


Generator Tanpa Beban

Apabila sebuah mesin sinkron difungsikan sebagai generator dengan diputar pada kecepatan sinkron dan rotor diberi arus medan (If), maka pada kumparan jangkar stator akan diinduksikan tegangan tanpa beban (Eo), yaitu sebesar:

Eo = 4,44 .Kd. Kp. f. φm. T Volt

Dalam keadaan tanpa beban arus jangkar tidak mengalir pada stator, sehingga tidak terdapat pengaruh reaksi jangkar. Fluks hanya dihasilkan oleh arus medan (If). Bila besarnya arus medan dinaikkan, maka tegangan keluaran juga akan naik sampai titik saturasi (jenuh), seperti diperlihatkan pada gambar 3. Kondisi generator tanpa beban bisa digambarkan rangkaian ekuivalennya

Generator Berbeban
Bila generator diberi beban yang berubah-ubah maka besarnya tegangan terminal V akan berubah-ubah pula, hal ini disebabkan adanya kerugian tegangan pada:
• Resistansi jangkar Ra
• Reaktansi bocor jangkar Xl
• Reaksi Jangkar Xa

a. Resistansi Jangkar
Resistansi jangkar/fasa Ra menyebabkan terjadinya kerugian tegang/fasa (tegangan jatuh/fasa) dan I.Ra yang sefasa dengan arus jangkar.

b. Reaktansi Bocor Jangkar
Saat arus mengalir melalui penghantar jangkar, sebagian fluks yang terjadi tidak mengimbas pada jalur yang telah ditentukan, hal seperti ini disebut Fluks Bocor.

c. Reaksi Jangkar
Adanya arus yang mengalir pada kumparan jangkar saat generator dibebani akan menimbulkan fluksi jangkar (ΦA ) yang berintegrasi dengan fluksi yang dihasilkan pada kumparan medan rotor(ΦF), sehingga akan dihasilkan suatu fluksi resultan sebesar .







Daftar Pustaka
mrratkey.blogspot.co
READ MORE - GENERATOR AC Share

Sabtu, 15 September 2012

cara dan pengertian kerja generator ac


Pengertian dan Prinsip Kerja Generator


Generator adalah meggunakan prinsip percobaannya faraday yaitu memutar magnet dalam kumparan atau sebaliknya, ketika magnet digerakkan dalam kumparan maka terjadi perubahan fluks gaya magnet (peribahan arah penyebaran medan magnet) di dalam kumparan dan menembus tegak lurus terhadap kumparan sehingga menyebabkan beda potensial antara ujung-ujung kumparan (yang menimbulkan listrik). syarat utama, harus ada perubahan fluks magnetik, jika tidak maka tidak akan timbul listrik. cara megubah fluks magnetik adalah menggerakkan magnet dalam kumparan atau sebaliknya dengan energi dari sumber lain, seperti angin dan air yang memutar baling-baling turbin untuk menggerakkan magnet tersebut.

jika suatu konduktor digerakkan memotong medan magnet akan timbul beda tegangan di ujung-ujung konduktor tsb. Tegangannya akan naik saat mendekati medan dan turun saat menjauhi. Sehingga listrik yg timbul dalam siklus: positif-nol-negatif-nol (AC). Generator DC membalik arah arus saat tegangan negatif, menggunakan mekanisme cincin-belah, sehingga hasilnya jadi siklus: positif-nol-positif-nol (DC]
 
                                                                                                                                    
Listrik sudah menjadi bagian yang penting bagi kehidupan manusia saat ini. Arus listrik dimanfaatkan sebagai sumber energi untuk menghidupkan berbagai macam alat-alat lisrik. Arus listrik didapatkan dari proses konversi sumber energi lainya ( energi panas, energi gerak, dll) menjadi energi listrik.

Generator merupakan sebuah alat yang mampu menghasilkan arus listrik. salah satu jenis generator adalah generator arus bolak balik yang akan dibahas saat ini. Generator arus bolak-balik berfungsi mengubah tenaga mekanis menjadi tenaga listrik arus bolak-balik. 

Generator Arus Bolak-balik sering disebut juga sebagai alternator atau generator AC (alternating current) atau juga generator singkron. Alat ini sering dimanfaatkan di industri untuk mengerakkan beberapa mesin yang menggunakan arus listrik sebagai sumber penggerak.

Generator arus bolak-balik dibagi menjadi dua jenis, yaitu:
a. Generator arus bolak-balik 1 fasa
b. Generator arus bolak-balik 3 fasa


Prinsip Kerja Generator
Prinsip dasar generator arus bolak-balik menggunakan hukum Faraday yang menyatakan jika sebatang penghantar berada pada medan magnet yang berubah-ubah, maka pada penghantar tersebut akan terbentuk gaya gerak listrik.

Besar tegangan generator bergantung pada :
1. Kecepatan putaran (N)
2. Jumlah kawat pada kumparan yang memotong fluk (Z)
3. Banyaknya fluk magnet yang dibangkitkan oleh medan magnet (f)
3. Konstruksi Generator

Generator arus bolak-balik ini terdiri dari dua bagian utama, yaitu
1. Stator, merupakan bagian diam dari generator yang mengeluarkan tegangan bolakbalik
2. rotor, merupakan bagian bergerak yang menghasilkan medan magnit yang menginduksikan ke stator.

Stator terdiri dari badan generator yang terbuat dari baja yang berfungsi melindungi bagian dalam generator, kotak terminal dan name plate pada generator. Inti Stator yang terbuat dari bahan ferromagnetik yang berlapis-lapis dan terdapat alur-alur tempat meletakkan lilitan stator. 

Lilitan stator yang merupakan tempat untuk menghasilkan tegangan. Sedangkan, rotor berbentuk kutub sepatu (salient) atau kutub dengan celah udara sama rata (rotor silinder). Konstruksi dari generator sinkron dapat dilihat pada gambar berikut ini.

Jumlah Kutub pada Generator
Jumlah kutub generator arus bolak-balik tergantung dari kecepatan rotor dan frekuensi dari ggl yang dibangkitkan. Hubungan tersebut dapat ditentukan dengan persamaan berikut ini.

Keterangan:
f = frekuensi tegangan (Hz)
p = jumlah kutub pada rotor
n = kecepatan rotor (rpm
INDUKSI  ELEKTROMAGNETIK
Induksi elektromagnetik dapat dikatakan sebagai proses perubahan energi mekanik (energi kinetic) menjadi energi listrik. Proses perubahan energi ini, berkaitan dengan konsep fluks magnetic
Kita mulai dengan mempelajari Fluks magnetic dan Huhum Faraday secara kuantitatif.
1. Fluks magnetik
Fluks magnetic didefinisikan sebagai hasil kali antara komponen induksi magnetic dengan luas bidang
Hukum Faraday
Perhatikan gambar berikut !
Hukum Lenz :
“ Arah arus induksi  adalah sedemikian sehingga medan magnetic yang ditimbulkannya berlawanan dengan arah medan magnetic yang menimbulkan arus induksi itu”
4. GGL induksi pada penghantar yang digerakan dalam medan magnetik

Penerapan Konsep Induksi Elektromagnetik
1. Dynamo/Generator AC
2. Generator DC
Generator adalah mesin yang mengubah energi kinetik menjadi energi listrik. Generator yang menghasilkan arus listrik searah dinamakan Generator arus searah (DC) atau dinamo. Generator yang menghasilkan arus bolak-balik disebut generator arus bolak-balik atau alternator.
Prinsip Kerja Generator
Prinsip kerja Generator adalah“menghasilkan arus listrik induksi dengan cara memutar kumparan  diantara kutub utara-selatan magnet, sehingga akan terjadi perubahan fluks magnetik, yang menghasilkan arus induksi.”
GGL Yang dihasilkan dari Generator :
e = e mak sin wt , jika wt = 90o, maka
e mak = NBA w,  e mak = GGL Maksimum
3. Transformator
Transformator adalah alat yang digunakan untuk mengubah tegangan bolak-balik (AC) dari tegangan tinggi ke tegangan rendah ( Transformator Step –Down)
Transformator Step-Up, mengubah tegangan rendah ke tegangan tinggi
Prinsip Keja : Terjadi perubahan fluks magnetik pada kumparan primer, yang menghasilkan arus induksi pada kumparan sekunder.
Rumus Transformator :  V1/ V2 = N1 / N2,    h = Ps/Pp x 100 %, P = V. I.

Sistem pengisian AC paling banyak digunakan, baik sistem pengisian dengan regulator mekanik (konvensional) maupun dengan IC regulator.
Sistem pengisian regulator mekanik
Komponen sistem pengisian regulator mekanik terdiri dari :
1.        Alternator yang berfungsi merubah energi gerak menjadi energi listrik. Listrik yang dihasilkan merupakan arus bolak-balik (AC), untuk merubah arus AC menjadi arus DC digunakan diode yang dipasang menjadi satu bagian dengan alternator.
2.        Regulator berfungsi untuk mengatur tegangan dan arus yang dihasilkan alternator dengan cara mengatur kemagnetan pada rotor altenator. Regulator juga berfungsi untuk mengatur hidup dan matinya lampu indikator pengisian.
3.        Sekering untuk memutus aliran listrik bila rangkaian dialiri arus berlebihan akibat hubungan singkat.
4.        Kunci kontak untuk menghubungkan atau memutus aliran ke lampu indicator dank e regulator. Aliran listrik ke regulator diteruskan ke altenator berfungsi untuk menghasilkan magnet pada altenator.
5.        Baterai menyimpan arus listrik dan stabilizer tegangan yang dihasilkan sistem pengisian.    
 ALTERNATOR
Alternator yang berfungsi merubah energi gerak menjadi energi listrik. Listrik yang dihasilkan merupakan arus bolak-balik (AC), untuk merubah arus AC menjadi arus DC digunakan diode yang dipasang menjadi satu bagian dengan Alternator.

PRINSIP KERJA ALTERNATOR

Prinsip alternator
Bila pada generator DC sebuah penghantar dibentuk “U”, di ujung penghantar dipasang komutator, pada komutator menempel sikat. Sikat “A”  merupakan sikat positip dan sikat “B” adalah sikat negatip, maka pada generator AC (altenator) kedua ujung penghantar dihubungkan ke slip ring dan jenis sikat sudah tidak jelas karena berubah ubah sesuai posisi penghantar.  Saat penghantar diputar maka penghantar tersebut akan memotong medan magnet sehingga menghasilkan induksi elektromagnetik. Arah arus yang dihasilkan akan berubah-ubah, pada posisi (1) arah arus menuju sikat “A”, namun pada posisi (2) arah arus berubah menuju sikat “B”. Perubahan tersebut dapat digambarkan dalam fungsi gelombang sinus.

KONSTRUKSI ALTERNATOR

Konstruksi alternator
Pada altenator terdapat 4 terminal yaitu terminal B,E,F dan N. Terminal B merupakan terminal output altenator yang dihubungkan ke baterai, beban dan regulator terminal B. Terminal E berhubungan dengan sikat negatip, bodi alternator dan terminal E regulator. Terminal F berhubungan dengan sikat positip dan dihubungkan ke terminal F regulator, Terminal N berhubungan dengan neutral stator coil, saat altenator menghasilkan listrik maka terminal N juga menghasilkan listrik, listrik yang dihasilkan terminal N dialirkan ke regulator terminal N, untuk mematikan lampu indicator pengisian.
Pada regulator terdapat 6 terminal mempunyai terminal B,E,F,N, IG dan L.  Empat dari 6 terminal tersebut berhubungan dengan terminal altenator yaitu B, E,F,  N. Dua  terminal regulator yang lain yaitu terminal IG dan L, berhubungan dengan terminal IG kontak dan lampu.

KOMPONEN UTAMA ALTERNATOR
Pulley
Berfungsi untuk tempat V belt penggerak alternator yang memindahkan gerak putar mesin untuk memutar alternator.

Kipas (fan)
Berfungsi untuk mendinginkan komponen altenator yaitu diode maupun kumparan pada alternator.

Rotor
Fungsi rotor untuk menghasilkan medan magnet, kuat medan magnet yang dihasilkan tergantung besar arus listrik yang mengalir ke rotor coil.  Listrik ke rotor coil disalurkan melalui sikat yang selalu menempel pada slip ring. Terdapat dua sikat yaitu sikat positip berhubungan dengan terminal F,  sikat negatip berhubungan dengan massa atau terminal E.  Semakin tinggi putaran mesin, putaran rotor altenator semakin tinggi pula, agar listrik yang dihasilkan tetap stabil maka kuat magnet yang dihasilkan semakin berkurang sebanding dengan putaran mesin.

Rotor alternator

Bila rotor dirangkai seperti gambar diatas, maka arus listrik akan mengalir dari positip baterai, variable resistor, amper meter, slip ring, rotor coil, slip ring dan ke negatip baterai. Adanya aliran listrik pada rotor menyebabkan rotor menjadi magnet,  saat tahanan pada variable resistor kecil maka arus yang mengalir sangat besar, magnet pada rotor sangat kuat, namun bila tahanan variable resistor besar maka arus yang mengalir ke rotor coil menjadi kecil sehingga kemagnetan juga menjadi kecil. Pada saat tahanan variable resistor kecil maka voltmeter  yang dipasang pada slip ring menunjukan tegangan yang besar, sebaliknya saat tahanan variable resistor besar maka tegangan pada slip ring menjadi kecil.

Stator
Stator berfungsi sebagai kumparan yang menghasilkan listrik saat terpotong medan magnet dari rotor.Stator terdiri dari stator core (inti stator)  dan stator coil. Disain stator coil ada 2 macam yaitu model “delta” dan model “Y”. Pada model  “Y”, ketiga ujung kumparan tersebut disambung menjadi satu. Titik sambungan ini disebut titik “N” (neutral point). Pada model delta ketiga ujung lilitan dijadikan satu sehingga membentuk segi tiga (delta). Model ini tidak memiliki terminal neutral (N). Stator coil menghasilkan arus listrik AC tiga phase. Tiap ujung stator dihubungkan ke diode positip dan diode negatip.

Konstruksi stator

Output stator

Tipe rangkaian stator
Dioda (rectifier)
Dioda  berfungsi untuk menyearahkan arus AC yang dihasilkan oleh stator coil  menjadi arus DC, disamping itu juga berfungsi untuk menahan agar arus dari baterai tidak mengalir ke stator coil.  Sifat diode adalah meneruskan arus listrik satu arah. Gambar 4.12 a. merupakan diode positip yang dirangkai seri dengan lampu pada sebuah baterai 12 V. rangkaian tersebut merupakan rangkaian bias maju (forward direction voltage) sehingga diode dapat mengalirkan arus listrik, lampu menyala. Bila hubungan kabel ditukar yang kabel yang berhubungan dengan positip dipindah ke negatip dan sebaliknya maka diode mendapat bias mundur (reverse direction voltage) sehingga diode tidak dapat mengalirkan arus listrik, maka lampu padam.

Konstruksi dioda pada alternator
Pada altenator jumlah diode terdiri dari 6 atau 9 buah diode yang digabungkan.  Menurut pemasangannya diode ini dapat dibagi menjadai 2 bagian yaitu diode positip dan diode negatip.  Membeda diode posistip dan negatip saat terpasang pada dudukannya dengan cara  dioda negatip plat pemegang bodi diode dibautkan langsung ke bodi alternator tanpa isolator, sedangkan pada diode positip plat pemegang bodi diode dipasang ke rumah alternator dengan menggunakan isolator.  Membedahkan diode lebih akurat menggunakan Ohm meter.  


Prinsip kerja penyearah arus listrik pada stator coil
Prinsip kerja penyearahan arus listrik yang dihasilkan stator coil pada altenator adalah sebagai berikut:
Saat rotor altenator berputar maka terjadi induksi elektromagnetik pada stator coil, gambar 4.13 a, menunjukkan bahwa ujung stator coil “A” negatip dan ujung stator coil “C” menghasilkan arus positip,  arus yang dihasilkan stator coil “C” disearahkan oleh diode positip “C” , kemudian dialirkan ke baterai (battery). Rotor terus berputar sehingga stator coil “C” yang tadinya menghasilkan arus positip menjadi menghasilkan arus negatip, arus positip dihasilkan oleh stator coil “B”,  arus yang dihasilkan stator coil “B” disearahkan oleh diode positip “B” , kemudian dialirkan ke baterai. Demikian seterusnya sehingga secara bergantian stator coil mengasilkan gelombang listrik dan disearakan oleh diode, selisih gelombang satu dengan yang lain 120º.

Sikat (brush)
Sikat berfungsi untuk mengalir arus listrik dari regulator ke rotor coil. Pada altenator terdapat dua sikat, yaitu :
1.        Sikat positip yang berhubungan dengan terminal F alternator
2.        Sikat negatip berhubungan dengan bodi altenator dan terminal E
Sikat selalu menempel dengan slip ring, saat rotor berputar maka akan terjadi gesekan antara slip ring dengan sikat, sehingga sikat menjadi cepat aus.  Kontak sikat dengan slip ring harus baik agar listrik dapat mengalir dengan baik,  agar kontak sikat dengan slip ring baik maka sikat ditekan oleh pegas.
Sikat merupakan bagian yang sering menjadi penyebab gangguan pada altenator, karena cepat aus. Sikat yang sudah pendek dapat menyebabkan aliran listrik ke rotor coil berkurang, akibat tekanan pegas yang melemah. Berkurangnya aliran listrik ke rotor coil menyebabkan  kemagnetan rotor berkurang dan listrik yang dihasilkan altenator  menurun.  Bila sikat suda pendek harus segera diganti, sebab kalau sampai sikat habis maka slip ring akan bergesekan dengan pegas sikat sehingga menjadi aus. Sikat yang sudah habis dapat menyebabkan liran listrik ke rotor coil terputus, kemgnetan rotor hilang, altenator tidak dapat menghasilkan listrik, tidak terjadi proses pengisian.

Sikat patah  dan pecahnya rumah sikat sering dijumpai akibat kesalahan saat merakit altenator. Saat  rotor dilepas sikat akan keluar akibat tekanan pegas, pada kondisi tersebut bila seseorang merakit rotor, maka bearing rotor akan menekan sikat sehingga sikat patah dan hal ini dapat pula menyebabkan rumah sikat pecah, untuk menghindari hal tersebut maka sikat harus dimasukkan ke rumahnya dan ditahan menggunakan kawat yang dimasukan melaui lubang kecil yang sedah tersedia, bila sikat sudah tertahan oleh kawat maka rotor dapat dimasukkan dengan aman.

Regulator
Regulator berfungsi untuk mengatur arus dan tegangan yang dihasilkan oleh altenator. Arus yang dihasilkan altenator sampai putaran 2000 rpm sebesar 10 A atau kurang, namun saat beban lampu dihidupkan maka arus yang dihasilkan pada putaran 2000 rpm sebesar 30 A atau lebih sesuai kapasitas dari altenator dan beban listriknya. Tegangan yang dihasilkan altenator dijaga tetap stabil pada 13,8-14,8 Volt. 
Regulator mekanik 6 terminal mempunyai terminal E, F, N, B, IG dan L. Pada regulator ini terdiri dari dua bagian yaitu voltage regulator yang berfungsi untuk mengatur arus dan tegangan pengisian dan voltage relay yang berfungsi untuk mengatur hidup dan matinya lampu indicator pengisian sebagai indikasi sistem pengisian berfungsi.

Pola susunan terminal pada regulator tipe A adalah IG,N,F dan E,L,B, sedangkan pola susunan terminal pada regulator tipe B adalah B,L,E dan F,N,IG. Meskipun terminal regulator mempunyai pola tertentu, namun kita sering mengalami kesulitan dalam menentukan terminal regulator, sehingga kita kesulitan menentukan apakah regulator tertentu tipa A atau tipe B. Cara menentukan terminal regulator mekanik 6 terminal adalah:
1.    Tentukan mana bagian voltage regulator, mana bagian voltage relay. Voltage regulator mudah dikenali karena mempunyai ciri mempunyai  resistor.
2.    Identifikasi terminal pada voltage regulator, dimana voltage regulator mempunyai 3 terminal yaitu IG, F dan E. 

Terminal
Ciri-ciri
IG
Berhubungan dengan resistor, dapat platina tepi yang saat normal/ belum bekerja posisi menempel dengan platina tengah
F
Berhubungan dengan resistor, dapat platina tengah
E
Berhubungan dengan massa/ bodi regulator, berhubungan dengan ujung kabel lilitan voltage regulator maupun voltage relay

3.    Identifikasi terminal pada voltage relay, dimana voltage relay mempunyai 3 terminal yaitu B, L dan N.
Terminal
Ciri-ciri
B
Berhubungan platina tepi yang saat normal/ belum bekerja posisi tidak menempel dengan platina tengah
L
Berhubungan dengan platina tengah
N
Berhubungan dengan kabel lilitan voltage relay

Setelah kita membahas di sini mengenai konstruksi dari suatu generator sinkron, maka artikel kali ini akan membahas mengenai prinsip kerja dari suatu generator sinkron. Yang akan menjadi kerangka bahasan kali ini adalah pengoperasian generator sinkron dalam kondisi berbeban, tanpa beban, menentukan reaktansi dan resistansi dengan melakukan percobaan tanpa beban (beban nol), percobaan hubung-singkat dan percobaan resistansi jangkar. 

Seperti telah dijelaskan pada artikel-artikel sebelumnya, bahwa kecepatan rotor dan frekuensi dari tegangan yang dibangkitkan oleh suatu generator sinkron berbanding lurus. Gambar 1 akan memperlihatkan prinsip kerja dari sebuah generator AC dengan dua kutub, dan dimisalkan hanya memiliki satu lilitan yang terbuat dari dua penghantar secara seri, yaitu penghantar a dan a’.
 

Untuk dapat lebih mudah memahami, silahkan lihat animasi prinsip kerja generator, di
 sini.


 
Gambar 1. Diagram Generator AC Satu Phasa Dua Kutub.

Lilitan seperti disebutkan diatas disebut “Lilitan terpusat”, dalam generator sebenarnya terdiri dari banyak lilitan dalam masing-masing fasa yang terdistribusi pada masing-masing alur stator dan disebut “Lilitan terdistribusi”. Diasumsikan rotor berputar searah jarum jam, maka fluks medan rotor bergerak sesuai lilitan jangkar. Satu putaran rotor dalam satu detik menghasilkan satu siklus per detik atau 1 Hertz (Hz). 

Bila kecepatannya 60 Revolution per menit (Rpm), frekuensi 1 Hz. Maka untuk frekuensi f = 60 Hz, rotor harus berputar 3600 Rpm. Untuk kecepatan rotor n rpm, rotor harus berputar pada kecepatan n/60 revolution per detik (rps). Bila rotor mempunyai lebih dari 1 pasang kutub, misalnya P kutub maka masing-masing revolution dari rotor menginduksikan P/2 siklus tegangan dalam lilitan stator. Frekuensi dari tegangan induksi sebagai sebuah fungsi dari kecepatan rotor, dan diformulasikan dengan:

 

Untuk generator sinkron tiga fasa, harus ada tiga belitan yang masing-masing terpisah sebesar 120 derajat listrik dalam ruang sekitar keliling celah udara seperti diperlihatkan pada kumparan a – a’, b – b’ dan c – c’ pada gambar 2. Masing-masing lilitan akan menghasilkan gelombang Fluksi sinus satu dengan lainnya berbeda 120 derajat listrik. Dalam keadaan seimbang besarnya fluksi sesaat :

ΦA = Φm. Sin ωt
ΦB = Φm. Sin ( ωt – 120° )
ΦC = Φm. Sin ( ωt – 240° )

 
Gambar 2. Diagram Generator AC Tiga Fasa Dua Kutub

Besarnya fluks resultan adalah jumlah vektor ketiga fluks tersebut adalah: 
ΦT = ΦA +ΦB + ΦC, yang merupakan fungsi tempat (Φ) dan waktu (t), maka besar- besarnya fluks total adalah: 
ΦT = Φm.Sin ωt + Φm.Sin(ωt – 120°) + Φm. Sin(ωt– 240°). Cos (φ – 240°)

Dengan memakai transformasi trigonometri dari : 

Sin α . Cos β = ½.Sin (α + β) + ½ Sin (α + β ), 

maka dari persamaan diatas diperoleh : 

ΦT = ½.Φm. Sin (ωt +φ )+ ½.Φm. Sin (ωt – φ) + ½.Φm. Sin ( ωt + φ – 240° )+ ½.Φm. Sin (ωt – φ) +½.Φm. Sin (ωt + φ – 480°)

Dari persamaan diatas, bila diuraikan maka suku kesatu, ketiga, dan kelima
akan silang menghilangkan. Dengan demikian dari persamaan akan didapat
fluksi total sebesar, ΦT = ¾ Φm. Sin ( ωt - Φ ) Weber .

Jadi medan resultan merupakan medan putar dengan modulus 3/2 Φ dengan
sudut putar sebesar ω. Maka besarnya tegangan masing-masing fasa adalah :

E maks = Bm. ℓ. ω r Volt

dimana :

Bm = Kerapatan Fluks maksimum kumparan medan rotor (Tesla)
ℓ = Panjang masing-masing lilitan dalam medan magnetik (Weber)
ω = Kecepatan sudut dari rotor (rad/s)
r = Radius dari jangkar (meter)

anda dapat juga membaca artikel yang terkait dengan bahasan kali ini, di:

- elektromekanis dalam sistem tenaga-1, di sini.
- elektromekanis dalam sistem tenaga-2, di sini.

Generator Tanpa Beban

Apabila sebuah mesin sinkron difungsikan sebagai generator dengan diputar pada kecepatan sinkron dan rotor diberi arus medan (If), maka pada kumparan jangkar stator akan diinduksikan tegangan tanpa beban (Eo), yaitu sebesar:

Eo = 4,44 .Kd. Kp. f. φm. T Volt

Dalam keadaan tanpa beban arus jangkar tidak mengalir pada stator, sehingga tidak terdapat pengaruh reaksi jangkar. Fluks hanya dihasilkan oleh arus medan (If). Bila besarnya arus medan dinaikkan, maka tegangan keluaran juga akan naik sampai titik saturasi (jenuh), seperti diperlihatkan pada gambar 3. Kondisi generator tanpa beban bisa digambarkan rangkaian ekuivalennya seperti diperlihatkan pada gambar 3b.


Gambar 3a dan 3b. Kurva dan Rangkaian Ekuivalen Generator Tanpa Beban


Generator Berbeban

Bila generator diberi beban yang berubah-ubah maka besarnya tegangan terminal V akan berubah-ubah pula, hal ini disebabkan adanya kerugian tegangan pada:
• Resistansi jangkar Ra
• Reaktansi bocor jangkar Xl
• Reaksi Jangkar Xa

a. Resistansi Jangkar
Resistansi jangkar/fasa Ra menyebabkan terjadinya kerugian tegang/fasa (tegangan jatuh/fasa) dan I.Ra yang sefasa dengan arus jangkar.

b. Reaktansi Bocor Jangkar
Saat arus mengalir melalui penghantar jangkar, sebagian fluks yang terjadi tidak mengimbas pada jalur yang telah ditentukan, hal seperti ini disebut Fluks Bocor.

c. Reaksi Jangkar
Adanya arus yang mengalir pada kumparan jangkar saat generator dibebani akan menimbulkan fluksi jangkar (ΦA ) yang berintegrasi dengan fluksi yang dihasilkan pada kumparan medan rotor(ΦF), sehingga akan dihasilkan suatu fluksi resultan sebesar :

Interaksi antara kedua fluksi ini disebut sebagai reaksi jangkar, seperti diperlihatkan pada Gambar 4. yang mengilustrasikan kondisi reaksi jangkar untuk jenis beban yang berbeda-beda.

Gambar 4a, 4b, 4c dan 4d. Kondisi Reaksi Jangkar.

Gambar 4a , memperlihatkan kondisi reaksi jangkar saat generator dibebani tahanan (resistif) sehingga arus jangkar Ia sefasa dengan GGL Eb dan ΦA akan tegak lurus terhadap ΦF.

Gambar 4b, memperlihatkan kondisi reaksi jangkar saat generator dibebani kapasitif , sehingga arus jangkar Ia mendahului ggl Eb sebesar θ dan ΦA terbelakang terhadap ΦF dengan sudut (90 -θ).

Gambar 4c, memperlihatkan kondisi reaksi jangkar saat dibebani kapasitif murni yang mengakibatkan arus jangkar Ia mendahului GGL Eb sebesar 90° dan ΦA akan memperkuat ΦF yang berpengaruh terhadap pemagnetan.

Gambar 4d, memperlihatkan kondisi reaksi jangkar saat arus diberi beban induktif murni sehingga mengakibatkan arus jangkar Ia terbelakang dari GGL Eb sebesar 90° dan ΦA akan memperlemah ΦF yang berpengaruh terhadap pemagnetan.

Jumlah dari reaktansi bocor XL dan reaktansi jangkar Xa biasa disebut reaktansi Sinkron Xs.

Vektor diagram untuk beban yang bersifat Induktif, resistif murni, dan kapasitif diperlihatkan pada Gambar 5a, 5b dan 5c.

 

Gambar 5a, 5b dan 5c. Vektor Diagram dari Beban Generator

Berdasarkan gambar diatas, maka bisa ditentukan besarnya tegangan jatuh yang terjadi, yaitu :

Total Tegangan Jatuh pada Beban:

= I.Ra + j (I.Xa + I.XL)
= I {Ra + j (Xs + XL)}

= I {Ra + j (Xs)} 

= I.Zs

Menentukan Resistansi dan Reaktansi

Untuk bisa menentukan nilai reaktansi dan impedansi dari sebuah generator, harus dilakukan percobaan (test). Ada tiga jenis test yang biasa dilakukan, yaitu:

• Test Tanpa beban ( Beban Nol )
• Test Hubung Singkat.
• Test Resistansi Jangkar.

Test Tanpa Beban

Test Tanpa Beban dilakukan pada kecepatan Sinkron dengan rangkaian jangkar terbuka (tanpa beban) seperti diperlihatkan pada Gambar 6. Percobaan dilakukan dengan cara mengatur arus medan (If) dari nol sampai rating tegangan output terminal tercapai.

 
Gambar 6. Rangkaian Test Generator Tanpa Beban.

Test Hubung Singkat

Untuk melakukan test ini terminal generator dihubung singkat, dan dengan Ampermeter diletakkan diantara dua penghantar yang dihubung singkat tersebut (Gambar 7). Arus medan dinaikkan secara bertahap sampai diperoleh arus jangkar maksimum. Selama proses test arus If dan arus hubung singkat Ihs dicatat.

 
Gambar 7. Rangkaian Test Generator di Hubung Singkat.

Dari hasil kedua test diatas, maka dapat digambar dalam bentuk kurva karakteristik seperti diperlihatkan pada gambar 8.

 
Gambar 8. Kurva Karakteristik Tanpa Beban dan Hubung Singkat sebuah Generator.

Impedansi Sinkron dicari berdasarkan hasil test, adalah:

, If = konstatn

Test Resistansi Jangkar

Dengan rangkaian medan terbuka, resistansi DC diukur antara dua terminal output sehingga dua fasa terhubung secara seri, Gambar 9. Resistansi per fasa adalah setengahnya dari yang diukur. 

 
Gambar 9. Pengukuran Resistansi DC.


Dalam kenyataannya nilai resistansi dikalikan dengan suatu faktor untuk menentukan nilai resistansi AC efektif , eff R . Faktor ini tergantung pada bentuk dan ukuran alur, ukuran penghantar jangkar, dan konstruksi kumparan. Nilainya berkisar antara 1,2 s/d 1,6 .

Bila nilai Ra telah diketahui, nilai Xs bisa ditentukan berdasarkan persamaan:


Semoga bermanfaat,


READ MORE - cara dan pengertian kerja generator ac Share